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Abstract. The motion of a charged particle in a magnetic field composed of a 
uniform axial component and a spatially rotating transverse component is 
analysed. Solutions of the nonlinear equations of motion are obtained which 
describe an oscillatory transfer of kinetic energy between axial motion and 
rotational motion in the transverse plane. A simple physical description of the 
interaction in terms of impulsive Lorentz forces is given which has formal 
similarity to the Huygens’ principle in physical optics. 

1. Introduction 
Magnetic fields derived from the superposition of a uniform axial component and 

a transverse component rotating in direction with displacement along the axis occur 
in a number of physical situations. Such fields were employed by Spitzer (1958) in 
the Stellarator, by Wingerson (1961) and others (Dreicer et al. 1962 and Karr et al. 
1963) for the trapping of plasma particles between magnetic mirrors, and by a number 
of workers (Hirshfield and Wachtel 1964, Bott 1965, Robinson 1969 and Kulke- 
private communication) interested in the pumping of free electrons into eigenstates 
of the electron cyclotron maser. They play a prime role in the cyclotron resonance 
detector-spectrometer system recently discussed for the far-infrared region of the 
spectrum (Robinson-to be published). Theoretical studies of particle-field inter- 
actions have been carried out by Wingerson e t  al. (1964) for the case of bifilar and 
quadrifilar current-carrying helices with varying pitch chosen to reduce the probability 
of particle escape through the loss cone of a magnetic mirror. The  procedure used by 
Wingerson et al. assumes resonance of the helical field and the helical particle orbit 
throughout the interaction and prescribes suitable velocity and field variations along 
the axial direction. Lidsky (1964) has discussed oscillations of non-resonant particles 
about the synchronous (resonant) particle orbit. 

Under some conditions synchronous motion of the particle and the helical field 
cannot occur. In  particular, this is so for the helix of constant pitch used in cyclotron 
maser work where the transfer of motion from the axial direction to the transverse 
plane necessarily involves the loss of any initial synchronism. It is our purpose in the 
present paper to analyse the transfer of energy between the axial or z direction and the 
transverse plane in a helix of constant pitch. 

2. The magnetic field 
Take the uniform component of magnetic induction field to be in the x direction 

and denote it B,. The transverse component is derived from two (or four) helical 
windings each with pitch P and displaced relative to one another along the x axis by 
a distance PIZ. It can be shown (Poritsky 1959) that the magnetic scalar potential of 
such an arrangement can, in the limit of infinite helix length, be written as the sum of a 
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series of n spatial harmonics of the variable nkx, where h = 277/P and n = 1, 2, ..., 
each with a variation in the transverse plane given by the modified Bessel function 
In(nhr), where Y = (xz +yz)l’z is the radial distance from the axis of the helices. If the 
currents in the two (or four) helices are equal but oppositely directed their contribu- 
tions on axis to the field in the 2; direction cancel. Furthermore, as Wingerson et a l .  
(1964) point out, the spatial harmonics with n even also cancel, while those with 
n = 3 ,  5, etc. are small in amplitude and may be neglected in comparison with the 
n = 1 harmonic. Following these workers we can therefore write the Cartesian 
components of the transverse helical field as 

B ,  = b(I , (kr)  + I,(kr)}sin k x  

B, = b{I,(kr) + Iz(kr)}cos k x .  

lye  shall restrict the region of interaction to the near vicinity of the axis where 
kr < 1 so that we may take 

B, = b sin k x  

B, = b COS kx 
(1) 

( 2 )  
where b is the constant magnitude of the transverse magnetic induction field. ?;ow, 
in practice, the helices are, of course, not infinitely long and it is necessary to assess the 
effect of finite length. T o  this end computer calculations based on Ampkre’s law 
have been carried out (1969) to determine the range of the dimensions of a bifilar 
arrangement for which the above expressions are applicable. It has been found that 
provided the pitch and length of the helix are not too short the field over most of its 
length is given by expressions (1) and (2)  and it falls off rapidly beyond the ends. 

3. Solution of the equations of motion 
Consider a particle of charge q and mass m travelling in the + z  direction with 

velocity &(O) parallel to the uniform field B,. At time t = 0 and position x = 0 it 
encounters the helical field directed in the x-y plane and rotating in direction as x 
increases in accordance with expressions (1) and (2). At time t the particle emerges 
from the end of the helix where the transverse field terminates. During the interaction 
Lorentz forces act on the charge to translate some of the x-directed momentum into 
momentum in the x-y plane and give to the particle a helical trajectory. 

The equations of charge motion are: 

where 

,;E - CO$ COS kx + U,,? 
y = cob& sin kx- w,E 

2 = - cob$ sin hz+ wbk cos k x  

and wb = - 
m m 

qb qBa 
w c  = - 

are cyclotron frequencies associated with the two orthogonal components of the 
magnetic induction field. The equations contain no source of energy other than that 
at injection at time t = 0 ; they include the conservation principle 

X 2 + 3 2 + & 2  = 2 ( 0 )  
where S’(0) is a constant. 

(7) 
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Set 

We proceed to solve these nonlinear equations subject to the initial conditions 

3 = j = 0 at x = 0 and t = 0. 

and define F and G by 
x = a(F-sin 2) 

Also set 
3 = a(G-cos 2). 

7 = W , t .  

Then if 3, GI 2 denote differentiation with respect to 7, equations (3), (4) and ( 5 )  take 
the form 

3 = G-COSZ (13) 
G =  - F + s i n Z  
2 = 2P(F cos 2- G sin 2). 

Substitute 

c o s Z =  G - F ,  s i n Z =  G + F  
into the last equation: 

Z + Z ~ ( G G + + F )  = o 
Z+P(G2+ F2) = h 

where h is a constant of integration. 
Setting 

H = G 2 + F 2  

A’= A-PH. 
we have 

Now regard F = F(Z), G = G(Z) as functions of 2, and denote by F‘ and G‘ 
derivatives with respect to 2. Then 

F = F ‘ Z  = F’(A-PH) 
G = G’Z = G’(h-PH) 

and from (13) and (14) 
F’(h-PH) = G-COS Z 
G’(h -PH) = - F + sin 2. 

Equations (18) and (19) give 

and hence, by (16), 

Multiply (18) by F, (19) by G and add : 

Now 

FF’+ GG‘ = F’ sin Z+ G’ cos Z 

QH’ = F’sin Z+ G’ cos 2. 

&H‘(h-PH) = G sin 2- F cos 2. 

(20) 

(21) 

(by (21)) 

( F  sin Z+ G cos 2)’ = (F’ sin ZS G’ cos 2) + ( F  cos 2- G sin 2) 
= F’sin Z +  G’ cos Z-+H’(h-PH) 
= iH’(1 -A) +&PHH‘ (by (20)) 

2A 
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and by integration 

where p is a constant of integration. 

F s i n  Z+ G cos Z = -*(A- l)H+$,8H2 +Bp (22) 

From (21) and (22) 

F = -~(A-1)HsinZ+t~H2sinZ+~psinZ-~H’(h-~H)cosZ (23) 
G = -&(A- 1)Hcos Z+@H2 cos Z++p cos Z+&H’(A-PH) sin 2. (24) 

Substituting into (16) gives 

H = { -+(A - 1)H + BPHZ + &p}Z + &H”(A - pH)2 

(A-PH)- = [4H-(p-(A- 1)H+&f3H2}2]1’2. (25) 

or 
d H  
dZ  

The  initial conditions (8) when inserted in (lo), (11) and (16) give F(0) = 0, 
G(0) = 1, H(0) = 1, and, from (13), (14) and (20), p(0) = G(0) = H’(0) = 0. Thus 
from (22) 

With this value of p equations (17) and (25) give 
p = A+l-*P. (26) 

(A-PH)H’ = H’g = A = [4H-(A+ 1 - ( A -  1)H+*/3(H2- 1)}2]1’2. (27) 
Hence 

dh H 

[4h - (A + 1 - (A - l)h ++p(h2 - 1)}2]112 

which gives H as an elliptic function of T.  

3.1. Synchronous injection 

velocity. That is, 
We suppose now that the particle enters the helical field with the synchronous 

or, by (9) and (12), 
k dx(0) 

w ,  dt 
Z(0) = -- = 1. 

Then, by (17) 
A = 1+p. 

We note that p is a small quantity: B, N 100 gauss, the helical field b will, in general, 
be of the order of or less than 1 gauss and /3 5 

Substitution of (30) into (28) gives 

= s H - I  dh 

0 (4h - 2Ph2 - $/32h4)112 

(where h =p/az) dP 
(p-2EpZ-p4)1‘2 

and 
cc = (P/4)1’3. (31) 
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Thus 
H = 1 +a-' T(aT) 

where T(v) is an elliptic function given by 

This can be reduced to the standard form 

2 . z -  1 cn-11 - ( d 3  + 1 + $.pya) + 1 
2(3)l'+ ( d 3  - 1 - Q.)T(V)  + 1 ' 

where 

485 

(32) 

(33) 

Thus in terms of elliptical functions we have 

1 -cn(2(3)l/*v, K }  
( d 3  + 1 + Qa) + (2/3 - 1 - #a) c11(2(3)~%, K)' 

T(v) = 

I n  particular, from (33), the period of T(v) is 2y where 

(35) 

From tables of elliptic functions (Jahnke and Emde 1945) we find 

y = 1.2143. (37) 
These results lead to the velocity of the particle. Substituting from (30), (31) and 

(32) into (17) we get 

or, in the same approximation as before 
2 = 1 -@@.-2T(MT)  

2 = 1 - 2 ( 2 p  ~ ( ~ ~ 1 .  
Hence z2 oscillates below 1 with period 

and amplitude 

2/3 2Y - a = 4.857 (2) (38) 

(39) 

From (23), (24), (25), (26), (31) and (32) we obtain with suitable approximation 

F = C ~ - ~ T ~ ( C ~ T )  s i n ~ - a - ' { T ( a ~ ) - 2 a T ~ ( C r ~ ) -  P ( c Y T ) ) ~ / ~  COST 

G = CC-~T~(LXT)  cos T + a - ' { T ( a ~ )  - 2aT2(m) - T4(a~))112 sin T 

(40) 

(41) 
where a = 4(ub/w0)2/3. Substitution into (10) and (11) now gives the Cartesian 
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components of particle velocity 

where Q is defined below. 
Thus 

and 

In  equations (42) to (45) we have introduced the notation 

The  square of the 

and magnitude 

Q = (WCWb2)1'3. 

axial velocity, &2, oscillates with period 

4y 4.857 
Q Q  
_ -  -- 

4 w ?( wb / w  c)','~ 

k2{1 + & ( w b / 0 ~ ) ~ ' ~ } '  

(44) 

(45) 

Let us take as an example an electron in a field B, = 50 gauss entering a trans- 
verse helical field b = 0.1 gauss with the synchronous velocity wc/k at time t = 0. 
We have wc = 2 7 ~ x  1 . 4 ~  lo8 s-l, wb = 2 x x  2.8 x lo5 s-l, x = $(1/500)213 and we 
can calculate values of T(&Qt) from (35). The elliptic cosine cn U = cn (U, k) ,  K = sin 
U' is defined by cn U = cos C$ where 

U = F(+I'x.') = (1 -sin2 tl'sin2 0) d6. J: 
In the present case a' = 1 5 O ,  and values of F(+/'x.')-elliptic integrals of the first 
kind-can be found from tables (Jahnke and Emde 1945). From (44) we can then 
calculate (k2/wc2) (a2 +y2), the fraction of the injected energy translated from the 
axial direction to motion in the transverse plane. The result, as plotted in figure l (a) ,  
shows the oscillatory transfer of a fraction of the energy between axial and transverse 
motion. Some 6% of the energy oscillates with a period 0.347 ps. Figure l ( b )  is a 
similar plot for B, = 50 gauss and b = 1.0 gauss. This larger transverse field 
transfers 29 % of the energy with a period of 0,0748 ps.  
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Figure 1. Percentage of the kinetic energy of an electron translated into circular 
motion by a helical magnetic field as a function of time. Initially the particle has 
the synchronous velocity and is moving parallel to a uniform field of 50 gauss. 
In  (a) the transverse helical field is 0.1 gauss, and in (b)  it is 1.0 gauss. The  
curves show an oscillatory transfer of a fraction of the energy between linear and 
circular motion. The broken curves show the parabolic approximation to the 

energy growth at early times discussed in 5 4. 

3.2. Asynchronous injection 
For injection velocities away from o c / k  (that is, A is not near unity) we integrate 

(28) by assuming first that p = 0. The  result is 

P f  1 2h 
( A -  1 ) 2  (A-  1)2  

H,a=o) = -- - ~ COS (A - 1 ) T .  

Hence, by (23) and (24), 
1 A 

A - 1  A - 1  
1 h 

A- 1 A - 1  

F<;;B=O) = - - s i n k +  - sin T 

G,fi=o) = - - C O S A T +  - cos 7. 

(47) 

(48) 

(49 1 
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For ,6 small but not zero, equations (10) and (1 1) give 

wb A 
$ = -  - (sin w,t - sin Aw,t) 

k A - 1  

(cos w,t - cos Aw,t) . wb A y = -- 
k A-1 

2h2 wb2 
$ 2 + $ 2  = ~- (1 -cos@-l)w,t}. 

( A  - l)z k2 
The velocity along the x axis can be obtained from (17). If 

can be neglected we obtain, apart from a small correction term, 
is small so that pz 

2wb' A2 
2 2  = W O A 2 +  -___ {cos ( A  - l)w,t - 11, 

k2 k' (A-1)'  (53) 

I n  reducing (17) to (53), terms are neglected which require ( A -  1)2 9 p. That is, 
by (17), results (52) and (53) apply to particles with injection velocities satisfying the 
condition 

Although we have chosen to derive the results for asynchronous injection on the 
basis of our previous development, we point out that equations (3) to (8) can be 
solved directly by perturbation methods to yield equations (50) to (54) as solutions 
to lowest order in p. However, perturbation methods cannot be used in the case of 
synchronous injection discussed in § 3.1. 

4. Physical description of the interaction 
The  complexity of the foregoing analysis of the equations of motion raises the 

need for a simple physical description of the interaction. We now take up this matter. 
We show that by considering the charged particle in cyclotron motion under the 
influence of a succession of elemental impulsive Lorentz forces in the transverse plane 
the behaviour can be readily understood, and approximate expressions resembling 
some of the foregoing solutions can be derived. 

Consider the total time t of interaction to be divided into a succession of sub- 
intervals each of length dt. In  each interval dt the momentum translated to the 
transverse plane will be 

d P  = qxb dt. 

Let us regard 2 as essentially constant and much greater than f and j .  Under these 
conditions the helical motion of the synchronous particle can stay in phase with the 
Lorentz forces rotating with the helical field b, and the net momentum translation 
will be q2bt. The  energy of rotational motion acquired is 

The  synchronous condition is oCt-k2t = 0. This parabolic growth of transverse 
energy is represented by the broken curves in figure 1. 
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I n  the helix of constant pitch a phase shift between successive Lorentz impulses 
must occur and the motion of the particle will be closely related to this phase shift. 
Let us again distinguish two cases : that of synchronous injection where the phase 
shift of the particle cyclotron motion with respect to the rotation of the field b develops 
as a consequence of the decrease of ,t by Lorentz forces, and the asynchronous case 
where the phase difference is due almost entirely to the initial asynchronism. In the 
former case one can see qualitatively the origin of the oscillatory energy exchange. I n  
the early stages of the interaction the succession of impulses act constructively to  
‘wind up’ the particle with an approximately parabolic growth of energy with time. 
Later, with the development of the shift of phase, they become so directed as to 
retard the circular motion and restore the energy to the axial direction. 

The  decrease of ,t below the synchronous velocity wc/k reduces the effective 
rotational frequency of the field b below wc and the electron develops a phase lead 4 
given by 

Figure 2 shows the variation of + with time for the values of field chosen in figure l(a). 
Comparison of these two figures shows that energy is translated into circular motion 

o d  

5 0.6 “i v 

0.4 

0 c a. 

0.2t 

3 
1 
1 

0 0.1 0.2 0.3 0.4 0.5 0.6 
Time (bsl 

Figure 2. The phase angle developed between Lorentz forces on an electron as a 
function of time. The conditions correspond to those of figure 1 (a). The helical 
motions of the electron and the transverse magnetic field are initially synchronous, 
but a phase slippage occurs as energy is transferred between linear and 

circular motion. 

until the phase has changed by about $T, and it is restored to the axial direction during 
the next third of a cycle. The  phase increases continuously except when the motions 
become momentarily synchronous when the momentum is totally x-directed. Similar 
phase shifts are associated with the oscillations of energy for other values of the fields 
B, and b. 

In  the case of asynchronous injection the phase difference between successive 
Lorentz impulses will be 

Let us regard 2 as essentially constant and add the impulses vectorially as indicated in 

S = (W,-k&)dt. 
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figure 3 to find the resultant translated momentum. It is proportional to the ratio of 
the cord to the arc of a circle subtending an angle I' at the centre, and has the value 

where 
I' = ( w c - k 2 ) t  

is the total phase shift developed during the interaction. Thus 

sin ( w e  - k2) t /2  
* 2 + p  = - = ___ 

m2 

which is virtually identical with equation (52). We note that (57) is the solution of 

\ 

Figure 3. Construction of the net momentum P imparted by a succession of 
elemental impulses dP. The phase shift between successive impulses is 6 and 

that between the first and last is I?. 

the linear equations obtained when 2 is approximated as a constant in (3) and (4). 
One expects this to be a reasonable approximation provided the phase change associ- 
ated with the small decrease in 2 indicated by (57)  is much smaller than I'. That is, 
provided 

or 

which is the same condition as (54). 
Equation (57) and the physical argument leading to it, and also the accurate 

equation (52), apply to the velocities both below and above the synchronous velocity. 
In  (56) and (52) the particle cyclotron motion slips with respect to the helical field 
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when f > w,/k,  while in the case f < wc/k it gains in phase relative to b. I n  the 
frame of reference moving along the x axis with the velocity of the particle the b field 
becomes static in the limiting case of zero drift velocity in the x direction and reverses 
its direction for particle motion in the -2 direction. Under these conditions the 
particle and field helical motions are ‘crossed’. The  previous picture still applies but 
the phase shift must now be the sum of wet and k f t .  Hence, for reversal of direction 
(or a change of particle sign) we have 

T h e  particle oscillates rapidly with very small amplitude. 
A useful analogy exists between the present interaction and effects in physical 

optics. It should be noted that the simple physical argument used here is similar to 
that used in optical diffraction and interference phenomena. For example, in Fourier 
transform spectroscopy the incident wave amplitude is first divided into two beams 
which are recombined with a succession of phase shifts imposed between the beams. 
The resulting superposition, or interferogram as it is called, ‘gives an output intensity 
which is modulated by a sinc squared function of the phase shift similar in form to 
(55). Again, in the theory of single-slit diffraction the intensity results from the 
superposition of amplitudes of Huygens’ wavelets originating from elemental sub- 
divisions of the aperture, with a succession of phase shifts determined by the positions 
of these elemental ‘sources’. The  sinc squared function in this case is well known. 
Going further, by analogy, one might expect the transverse energy of a charged 
particle after passage through several bifilar helices to be analogous to that of the 
intensity due to a multiple-slit diffraction grating. This will be the case away from 
synchronism and when the small perturbation condition (58) is valid for the entire 
multiple-helix interaction. That is, under conditions where the solution of the linear 
equations (3) and (4) with 2 taken constant is a good approximation. We have found, 
for example, that the solutions of these equations for the motion through two helices 
gives an expression for A? +y2 similar to that for the intensity produced by a double- 
slit diffraction grating. It is simply expression (56) multiplied by a factor 4 cos2y 
where y = ( k f  - wc)(tl + t 2 ) /2 ,  tl being the transit time for each helix, and t ,  the 
time of flight between the helices. This additional factor gives a fine structure within 
the sin? I’/2 envelope. 

Although we do not wish at this time to pursue the problem of particle trapping in 
plasma mirror devices in any depth, it would seem that both the analytic results and 
the physical model given here are useful in connection with this question. When a 
helical field is placed between confining magnetic mirrors to increase the magnetic 
moment of the ionized particles, reflections cause the particles to travel through it in 
the + z and - z directions alternatively. The sense of rotation of charged particles is 
unchanged in a mirror reflection, but the velocity f and hence the sense of the helical 
trajectory are reversed. Thus on the return transit in the -x direction the particle 
and the b field rotate with opposite handedness. For a forward transit the energy 
transfer is given by (44) or (52)) while a reverse transit is described by (59). If 
multiple transits through the helix occur with completely random phases, as seems 
likely, we can treat the eventual escape through the mirrors as a random walk problem 
each ‘step’ being the randomly directed velocity acquired in a single transit, with 
escape corresponding to the return of the particle to a small region near the origin of 
phase space whose size is determined by the loss cone of the mirror. This would be 
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equivalent to the diffusion formulation of Wingerson et al. (1964). In  the opposite 
extreme, any component of phase coherence between one transit and the next can be 
thought of in terms of the well-known curves of multiple slit diffraction theory 
(Born and Wolff 1959). Of the particles within a range of initial (asynchronous) 
velocities which are trapped beyond the mirror loss cone following the first transit, a 
certain fraction associated with the minima of the sin2 (rj2) cos2y against 2 curve 
will escape after the second transit. These will be the particles which, by virtue of 
their times of passage into the mirror and back again, re-negotiate the helix with such 
phases that their initial circular motion is unwound in the next pass. Subsequent 
transits would tend to successively sweep other narrow ranges of the velocity spectrum 
through the loss cone. 
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